教員紹介

松岡 秀忠
Matsuoka Hidetada

所属・肩書

健康薬学科/分子生物学研究室(准教授)

最終学歴

大阪大学大学院 理学研究科 生物科学専攻 博士後期課程修了

取得学位

博士(理学)(大阪大学)

所属学会

日本分子生物学会、日本生理学会、北米神経科学学会、アメリカ細胞生物学会

現在の専門分野

分子生物学、細胞生理学

現在の研究課題

●TASK1チャネルの構造機能相関の解析
●精神疾患発症の分子メカニズムの解明
●BDNFにより誘導される遺伝子の同定および機能解析

主要研究業績

●内分泌細胞におけるTASK1チャネルの機能調節機構の解析
●内分泌細胞における細胞内カルシウムシグナリングとホルモン分泌機構の解析
●BDNFにより誘導される遺伝子の同定および機能解析
●生細胞イメージングを用いたSrc family tyrosine kinase活性制御の時空間的解析

最近の研究業績

1. Harada K, Matsuoka M, Toyohira Y, Inoue M Mechanisms for establishment of GABA signaling in adrenal medullary chromaffin cells J Neurochem. 2021 Mar 11. Online ahead of print.
2. Matsuoka H, Pokorski M, Harada K, Yoshimura R, Inoue M Expression of p11 and heteromeric TASK channels in rat carotid body glomus cells and nerve growth factor differentiated PC12 cells J Histochem Cytochem. 2020 Oct;68(10):679-690
3. Inoue M, Matsuoka H, Harada K, Mugishima G, Kameyama M TASK channels: channelopathies, trafficking, and receptor-mediated inhibition Pflügers Archiv - Eur J Physiol- 2020 Jul;472(7):911-922
4. Koshimizu H, Suzuki S, Kawai A, Miura R, Ohta K, Miki T, Adachi N, Matsuoka H Vexin is up-regulated in cerebral cortical neurons by brain-derived neurotrophic factor Neuropsychopharmacology Reports 2020;40:275-280.
5. Inoue M, Harada K Matsuoka H Mechanisms for pituitary adenylate cyclase-activating polypeptide-induced increase in excitability in guinea-pig and mouse adrenal medullary cells Eur J Pharmacol. Apr 5;872:172956 2020
6. Matsuoka H, Harada K, Mashima K, Inoue M Muscarinic receptor stimulation induces TASK1 channel endocytosis through a PKC-Pyk2-Src pathway in PC12 cells Cell Signal. 2020 Jan;65:109434
7. Harada K, Matsuoka H, Inoue M STIM1-dependent membrane insertion of heteromeric TRPC1/4 channels in response to muscarine receptor stimulation J Cell
Sci. 2019 May 31;132(11).
8. Inoue M, Harada K, Matsui M, Matsuoka H Differences among muscarinic agonists in M1 receptor-mediated nonselective cation channel activation and TASK1 channel inhibition in adrenal medullary cells Eur J Pharmacol 2019 Jan 15;843:104-112
9. Inoue M, Matsuoka H, Lesage F, Harada K Lack of p11 expression facilitates acidity-sensing function of TASK1 channels in mouse adrenal medullary cells FASEB J. 2019 Jan;33(1):455-468
10. Harada K, Matsuoka H, Inoue M. Expression and regulation of M-type K+ channel expression in PC12 cells and rat adrenal medullary cells Cell Tissue Res. 2018 Jun;372(3):457-468
11. Miyake T, Wang D, Matsuoka H, Morita K, Yasuda H, Yatera K, Kanazawa T, Yoshida Y Endocytosis of particulate matter induces cytokine production by neutrophil via Toll-like receptor 4 Int Immunopharmacol. 2018 Apr 57:190-199
12. Adachi N, Suzuki S, Matsuoka H, Fushimi S, Ono J, Ohta K, Hirai Y, Miki T, Koshimizu H Corticotropin-releasing hormone-binding protein is upregulated by brain-derived neurotrophic factor and is secreted in an activity-dependent manner in rat cerebral cortical neurons J Neurochem. 2018 146(1);99-110
13. Inoue M, Matsuoka H, Harada K, Lung-Sen Kao Muscarinic receptors in adrenal chromaffin cells: Physiological role and regulation of ion channels Pflugers Arch-Eur J Physiol- 2018 Jan 470(1):29-38
14. Matsuoka H, Inoue M Molecular mechanism for muscarinic M1 receptor-mediated endocytosis of TWIK-related acid-sensitive K+ 1 channels in rat adrenal medullary cells J Physiol. 2017 Nov 15;595(22).6851–6867
15. Suzuki S, Koshimizu H, Adachi N, Matsuoka H, Fushimi S, Ono J, Ohta K, Miki T. Functional interaction between BDNF and mGluR II in vitro: BDNF down-regulated mGluR II gene expression and an mGluR II agonist enhanced BDNF-induced BDNF gene expression in rat cerebral cortical neurons Peptides. 2017 Mar, 89:42-49
16. Harada K, Matsuoka H, Fujihara H, Ueta Y, Yanagawa Y, Inoue M GABA signaling and neuroactive steroids in adrenal medullary chromaffin cells Frontiers in Cellular Neuroscience 2016 Apr,18;10:100 Review.
17. Matsuoka H, Inoue M. Src mediates endocytosis of TWIK-related acid-sensitive K+ 1 channels in PC12 cells in response to nerve growth factor Am J Physiol Cell Physiol. 2015 Aug 15;309(4):C251-63
18. Harada K, Matsuoka H, Miyata H, Matsui M, Inoue M. Identification of muscarinic receptor subtypes involved in catecholamine secretion in adrenal medullary chromaffin cells by genetic deletion. Br J Pharmacol. 2015 Mar;172(5):1348-59.
19. Katoh A, Shoguchi K, Matsuoka H, Yoshimura M, Ohkubo J, Matsuura T, Maruyama T, Ishikura T, Aritomi T, Fujihara H, Hashimoto H, Suzuki H, Murphy D, Ueta Y Fluorescent Visualization of the Hypothalamic Oxytocin Neurons Activated by CCK-8 in Rats Expressing c-fos-eGFP and Oxytocin-mRFP1 Fusion Transgenes J Neuroendocrinol. 2014 May;26(5):341-7
20. Inoue M, Harada K, Nakamura J, Matsuoka H. Regulation of α3-containing GABAA receptors in guinea-pig adrenal medullary cells by adrenal steroids. Neuroscience. 2013 Dec;253:245-55.
21. Matsuoka H, Harada K, Nakamura J, Inoue M. Nerve growth factor-induced endocytosis of TWIK-related acid-sensitive K+ 1 channels in adrenal medullary cells and PC12 cells Pflugers Arch-Eur J Physiol- 2013 Jul;465:1051-64
22. Inoue M, Harada K, Matsuoka H, Nakamura J, Warashina A. Mechanisms and roles of muscarinic activation in guinea-pig adrenal medullary cells. Am J Physiol Cell Physiol. 2012 Sep;303(6):C635-644
23. Harada K, Matsuoka H, Sata T, Warashina A, Inoue M. Identification and Role of Muscarinic Receptor Subtypes Expressed in Rat Adrenal Medullary Cells J Pharmacol Sci 2011;117:253-64
24. Matsuoka H, Harada K, Nakamura J, Fukuda M, Inoue M. Different distribution of synaptotagmin-1, -4, -7, and -9 in rat adrenal chromaffin cells. Cell and Tissue Research 2011 Apr;344(1):41-50.
25. Ding N, Yamashita U, Matsuoka H, Sugita T, Tsukada J, Noguchi J, Yoshida Y Apoptosis induction through proteasome inhibitory activity of cucurbitacin D in human T-Cell leukemia. Cancer 2011 Jun 15;117(12):2735-46.
26. Inoue M, Harada K, Matsuoka H, Warashina A. Paracrine role of GABA in Adrenal Chromaffin Cells. Cell Mol Neurobiol. 2010 Nov;30(8):1217-24
27. Harada K, Matsuoka H, Nakamura J, Fukuda M, Inoue M. Storage of GABA in chromaffin granules and not in synaptic-like microvesicles in rat adrenal medullary cells. J Neurochem. 2010 Jul;114(2):617-26.
28. Harada K, Matsuoka H, Fujimoto N, Endo Y, Hasegawa Y, Matsuo A, Kikuchi Y, Matsumoto T, Inoue M. Localization of Type-2 Angiotensin II Receptor in Adrenal Glands. J Histochem Cytochem. 2010 Jul;58(7):585-93.
29. Matsuoka H, Harada K, Ikeda T, Uetsuki K, Sata, T, Warashina A, Inoue M. Ca2+ pathway involved in the refilling of store sites in rat adrenal medullary cells Am J Physiol Cell Physiol. 2009 Apr;296(4):C889-99.
30. Matsuoka H, Hrada K, Endo Y, Warashina A, Doi Y, Nakamura J, Inoue M. Molecular mechanisms supporting paracrine role of GABA in rat adrenal medullary cells J Physiol. 2008 Oct 15;586(20):4825-42
31. Inoue M, Harada K, Matsuoka H, Sata T, and Warashina A. Inhibition of TASK channels by muscarinic receptor stimulation in rat adrenal medullary cells J Neurochem. 2008 Aug;106(4):1804-14
32. Matsuoka H, Nada S, Okada M. Mechanism of Csk-mediated Down-regulation of Src Family Tyrosine Kinases in Epidermal Growth Factor Signaling J Biol Chem. 2004 Feb 13;279 (7):5975-5983
33. Rengifo-Cam W, Konishi A, Morishita N, Matsuoka H, Yamori T, Nada S, Okada M Csk defines the ability of integrin-mediated cell adhesion and migration in human colon cancer cells: implication for a potential role in cancer metastasis Oncogene. 2004 Jan 8;23(1):289-97

受賞

第36回産業医科大学学会総会 学会長賞論文受賞

外部競争的研究資金

1) 科学研究費(基盤研究C)(日本学術振興会):TASK1チャネルによるアドレナリン分泌調節とその生理的意義の解明, 2018-2020
2) 科学研究費(基盤研究C)(日本学術振興会):アドレナリン分泌機序におけるTASKチャネルの生理的意義の解明, 2014-2016年度
3) 科学研究費(若手研究B)(日本学術振興会):アドレナリン分泌機序におけるTASKチャネルの機能と生理的意義の解明, 2012-2013
4) 科学研究費(若手研究B)(日本学術振興会):アドレナリン分泌機序におけるTASKチャネルの機能と情報伝達機構の解明, 2010-201
5) 科学研究費(基盤研究C)(日本学術振興会):副腎髄質細胞におけるGABAA受容体サブユニットの構成の分子機序, 2009-2011

入試情報 ADMISSION